
Introduction to R
setup, data manipulation and plotting

Alexander Tolios

day 3

preface
housekeeping
Many examples were taken from different online sources:

• Book by Yihui Xie et al.
• Book by Hadley Wickham and Garrett Grolemund
• Presentation by Thomas Lin Pedersen

In addition, many packages from/around the RStudio universe have their own cheat sheets.

programming concepts for data science
the IDE
When programming: use an IDE (integrated development environment)

• RStudio
• vim/neovim with plugins like e.g. Nvim-R
• Emacs with ESS

Advantages of an IDE in general:

• code completion
• highlighting
• easier access to some often-used function

RStudio

If unsure: use RStudio (very friendly for beginners)

Recommended tweaks (really, do those):

• Tools -> Global Options -> General -> DEACTIVATE ‘Restore most recently opened project at
startup’

• Tools -> Global Options -> General -> DEACTIVATE ‘Restore .RData into workspace at startup’
• Tools -> Global Options -> General -> CHANGE ‘Save workspace to .RData on exit: Never’
• Tools -> Global Options -> General -> DEACTIVATE ‘Always save history (even when not saving

.RData)’

Other interesting options to consider (personal preference):

1

https://bookdown.org/yihui/rmarkdown-cookbook/
https://r4ds.had.co.nz/
https://www.data-imaginist.com/
https://posit.co/resources/cheatsheets/
https://rstudio.com/
https://www.vim.org/
https://neovim.io/
https://github.com/jalvesaq/Nvim-R
https://www.gnu.org/software/emacs/
https://ess.r-project.org/

• Tools -> Global Options -> Appearance -> Editor theme: XXX (try out which one you like, I prefer it
dark)

• Tools -> Global Options -> Pane Layout -> XXX (try out which one you like, I prefer ‘Source: left,
Console: right’)

• Tools -> Global Options -> Code -> Editing -> Keybindings: XXX (before you eventually switch to
something different, try the keybindings out here, I prefer the vim-keybindings - but do your homework
before!)

REPL-style
The read-eval-print-loop (REPL) allows to execute one command after the other and to get the results back
to the user.

This allows instantaneous prototyping and is the standard when doing data science work (although it is not
limited to scripting languages).

Examples of REPL-use cases:

• all kinds of shells (to interact with the computer)
• typical data science languages (R, Python, Julia, Matlab/Octave, . . .)
• interactive debugging

Examples of REPL-abuses:

• An R-script, which doesn’t run automatically, because you have to run it line-by-line and sometimes
leave stuff out ;)

The goal should ALWAYS be that you can run a script non-interactively and get some results.
If this doesn’t work your analysis is probably not reproducible!

For an example on how NOT to do it see the R-script bad_R-script.R

Basic ‘modes’ of working in R

shell-based only
Only use this if you want to do trivial stuff (e.g. amplicon-calculation)

You could do that without an IDE (since it probably won’t help you, but adds a lot of overhead)

R-script
This should be your default way of programming in R.

Keep everything you run in your script. Also create a separate folder for your project and store all the data
and scripts you need in this folder.

Write lots of comments, since you never write a script only for your current self: everything should be
understandable also for your future self.

Whenever you are planning to reuse something, assign values to objects. That way you separate input from
code, which makes everything easier to read.

2

https://stackoverflow.com/questions/11828270/how-do-i-exit-the-vim-editor
https://stackoverflow.com/questions/11828270/how-do-i-exit-the-vim-editor

just a starter. . .
basic stuff to do with R

use R as a simple calculator

2 + 2
#> [1] 4

This can be useful for quick calculations.

R is more than a calculator
Stuff on functions

a <- 3
b <- sqrt(a)
print(b)
#> [1] 1.732051

If you don’t know how to use a function, look it up in the help-page using ?FUNCTIONNAME

types of objects in R
Basic R data objects can store a single value

basic R data type consisting of a single value (of the type numeric, integer, complex, logical or character)
a <- 3
print(a)
#> [1] 3
b <- "text"
print(b)
#> [1] "text"

expand Rs functionality
Using the R-shell you can access functions exported by all the loaded libraries.

To install a package, use the command install.packages("NAME_OF_PACKAGE"). Since this com-
mand will always install the package (even if it’s already installed), it’s recommended to use
pacman::p_load(NAME_OF_PACKAGE) instead.

Packages can be loaded using library(NAME_OF_PACKAGE).

Advanced ‘modes’ of working in R
Rmarkdown document
Intertwine a markdown-document with chunks of code that gets executed.

3

Interacting with other languages

You can use different languages for that, not only R.

this is an R-chunk (starting with ```{r}...```
a <- 2

Python and R can easily interact.

this is a Python-chunk (starting with ```{python}...```
a = 3
print(a)

#> 3
print(r.a)
#> 2.0

Keep in mind that objects created in R have to be called using r.OBJECTNAME, otherwise the Python-object
will be used.

By using a classical shell (like bash) it’s easy to interact with your base operating system.

this is a bash-chunk (starting with ```{bash}...```
ls -l

#> total 20
#> -rw------- 1 ruser ruser 20477 Apr 16 15:07 main.Rmd
#> drwx------ 1 ruser ruser 248 Apr 16 15:00 output

Obviously the interpreter for each of the languages has to be installed to be used.

Output formats using Rmarkdown

Rmarkdown can be used to create documents or presentations. Rmarkdown-options can be defined either in
the yaml-header or using commands which get executed when compiling the document (which are therefore
dependend on your choice of output format).

Most common output formats are:

• pdf documents (using LaTeX)
• html documents (using html)
• pdf presentations (using LaTeX Beamer class)
• html presentations (using ioslides or slidy)
• html/js presentations (using reveal.js)
• other formats (e.g. Microsoft Powerpoint, Microsoft Word)

The conversion is performed using the awesome pandoc engine.

For details refer to the R Markdown: The Definitive Guide-book by Yihui Xie et al.

Take care when using pdf-output: this often needs many dependencies (e.g. huge parts of the LaTeX
development environment).

Compile Rmarkdown-documents

For the compilation of Rmarkdown-documents into an output format the packages rmarkdown and knitr are
used.

For the analyses to be reproducible, specify the compilation command manually:

4

https://bookdown.org/yihui/rmarkdown/language-engines.html#python
https://bookdown.org/yihui/rmarkdown/language-engines.html#shell-scripts
https://bookdown.org/yihui/rmarkdown/pdf-document.html
https://bookdown.org/yihui/rmarkdown/html-document.html
https://bookdown.org/yihui/rmarkdown/beamer-presentation.html
https://bookdown.org/yihui/rmarkdown/beamer-presentation.html
https://bookdown.org/yihui/rmarkdown/slidy-presentation.html
https://bookdown.org/yihui/rmarkdown/revealjs.html
https://pandoc.org/MANUAL.html
https://bookdown.org/yihui/rmarkdown/

rmarkdown::render(input = "YOURFILENAME.Rmd")

That way you can ensure that it can be run from within a script.

Markdown in general

Markdown is a (or the most) lightweight markup language for document generation.

Be aware that multiple markdown syntaxes exist and that they are NOT compatible!

Relevant examples of markdown commands:

Heading level 1
Heading level 2

italic or _italic_
bold or __bold__
italic and bold or ___italic and bold___

![Figure legend](PATH_TO_IMAGE.png)

* or - or + Unordered lists
* or - or + (with indentation): unordered sublists

1. or 2. or any other number: ordered lists
1. or 2. or any other number: ordered sublists

`stuff`: stuff to be formated as code

--- or *** or ___ horizontal ruler

[some text](https://example.org): a hyperlink
[some text](https://example.org "a title"): a hyperlink with a title

> Quotes
>> Subquotes

* escaping special characters (in this case the `*`)

(4 spaces): ignore all markdown syntax, just display the text as is
(this is how I formated this paragraph)

Information on Rmarkdown can be found in Yihuis’ book.

importing and exporting data
importing data
Several different possibilities of importing data in R exist.

Almost all of them can be solved using the rio-package.

rio::import(file = "output/penguins.csv") %>% as_tibble() %>% head(n = 4)
#> # A tibble: 4 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

5

https://www.markdownguide.org/basic-syntax
https://bookdown.org/yihui/rmarkdown/markdown-syntax.html

#> <chr> <chr> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgersen 39.1 18.7 181 3750
#> 2 Adelie Torgersen 39.5 17.4 186 3800
#> 3 Adelie Torgersen 40.3 18 195 3250
#> 4 Adelie Torgersen NA NA NA NA
#> # i 2 more variables: sex <chr>, year <int>
rio::import(file = "output/penguins.rds") %>% as_tibble() %>% head(n = 4)
#> # A tibble: 4 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <fct> <fct> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgersen 39.1 18.7 181 3750
#> 2 Adelie Torgersen 39.5 17.4 186 3800
#> 3 Adelie Torgersen 40.3 18 195 3250
#> 4 Adelie Torgersen NA NA NA NA
#> # i 2 more variables: sex <fct>, year <int>

basic tidy
operations on dataframes
The ‘tidyverse’ is a collection of packages designed to work with dataframes (or tibbles). The main package
is dplyr.

selecting columns

Use the select command to keep or discard specific columns in a dataframe.

dplyr::select(iris, Sepal.Length, Species)
#> # A tibble: 150 x 2
#> Sepal.Length Species
#> <dbl> <fct>
#> 1 5.1 setosa
#> 2 4.9 setosa
#> 3 4.7 setosa
#> 4 4.6 setosa
#> 5 5 setosa
#> 6 5.4 setosa
#> 7 4.6 setosa
#> 8 5 setosa
#> 9 4.4 setosa
#> 10 4.9 setosa
#> # i 140 more rows

dplyr::select(iris, -Petal.Width)
#> # A tibble: 150 x 4
#> Sepal.Length Sepal.Width Petal.Length Species
#> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 setosa
#> 2 4.9 3 1.4 setosa
#> 3 4.7 3.2 1.3 setosa
#> 4 4.6 3.1 1.5 setosa
#> 5 5 3.6 1.4 setosa

6

#> 6 5.4 3.9 1.7 setosa
#> 7 4.6 3.4 1.4 setosa
#> 8 5 3.4 1.5 setosa
#> 9 4.4 2.9 1.4 setosa
#> 10 4.9 3.1 1.5 setosa
#> # i 140 more rows

filtering rows

With the filter command you can keep or discard rows according to a function.

dplyr::filter(iris, Species == "setosa")
#> # A tibble: 50 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # i 40 more rows

dplyr::filter(iris, Sepal.Length < 5)
#> # A tibble: 22 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 4.9 3 1.4 0.2 setosa
#> 2 4.7 3.2 1.3 0.2 setosa
#> 3 4.6 3.1 1.5 0.2 setosa
#> 4 4.6 3.4 1.4 0.3 setosa
#> 5 4.4 2.9 1.4 0.2 setosa
#> 6 4.9 3.1 1.5 0.1 setosa
#> 7 4.8 3.4 1.6 0.2 setosa
#> 8 4.8 3 1.4 0.1 setosa
#> 9 4.3 3 1.1 0.1 setosa
#> 10 4.6 3.6 1 0.2 setosa
#> # i 12 more rows

Rows can also be chosen by position, by order or a specific variable or randomly.

dplyr::slice_head(iris, prop = 0.1)
#> # A tibble: 15 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa

7

#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> 11 5.4 3.7 1.5 0.2 setosa
#> 12 4.8 3.4 1.6 0.2 setosa
#> 13 4.8 3 1.4 0.1 setosa
#> 14 4.3 3 1.1 0.1 setosa
#> 15 5.8 4 1.2 0.2 setosa

dplyr::slice_max(iris, order_by = Sepal.Width, n = 3)
#> # A tibble: 3 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.7 4.4 1.5 0.4 setosa
#> 2 5.5 4.2 1.4 0.2 setosa
#> 3 5.2 4.1 1.5 0.1 setosa

dplyr::slice_sample(iris, n = 3)
#> # A tibble: 3 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 6.7 3.3 5.7 2.1 virginica
#> 2 6.5 3 5.5 1.8 virginica
#> 3 6.5 3.2 5.1 2 virginica

create new variables

New variables can be created using information from preexisting ones.

dplyr::mutate(iris, new_column = Sepal.Length + 2 * Petal.Width)
#> # A tibble: 150 x 6
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species new_column
#> <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
#> 1 5.1 3.5 1.4 0.2 setosa 5.5
#> 2 4.9 3 1.4 0.2 setosa 5.3
#> 3 4.7 3.2 1.3 0.2 setosa 5.1
#> 4 4.6 3.1 1.5 0.2 setosa 5
#> 5 5 3.6 1.4 0.2 setosa 5.4
#> 6 5.4 3.9 1.7 0.4 setosa 6.2
#> 7 4.6 3.4 1.4 0.3 setosa 5.2
#> 8 5 3.4 1.5 0.2 setosa 5.4
#> 9 4.4 2.9 1.4 0.2 setosa 4.8
#> 10 4.9 3.1 1.5 0.1 setosa 5.1
#> # i 140 more rows

combining multiple functions
Try to create as few objects in your global environment as possible (and if you create them, get rid of them if
you don’t need them any more using rm).

8

The best way to do that is by chaining commands together using the pipe.

Cave: the pipe is different in different programming languages (e.g. | in most programming languages and
all classical UNIX system shells and %>% in GNU R). Also R pipes objects, while most other classical shells
pipe raw text!

summarize data
group data according to a variable
A grouping doesn’t change the data by itself but allows subsequent commands to be used on groups.

iris %>%
dplyr::group_by(Species)

#> # A tibble: 150 x 5
#> # Groups: Species [3]
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # i 140 more rows

perform summaries
Summaries can be used to perform actions on grouped variables.

iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(mean_sepal_length = mean(Sepal.Length))

#> # A tibble: 3 x 2
#> Species mean_sepal_length
#> <fct> <dbl>
#> 1 setosa 5.01
#> 2 versicolor 5.94
#> 3 virginica 6.59

Multiple summarization steps can be performed at the same time.

iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize(mean_sepal_length = mean(Sepal.Length),

median_Petal_width = median(Petal.Width),
n = n())

#> # A tibble: 3 x 4
#> Species mean_sepal_length median_Petal_width n

9

#> <fct> <dbl> <dbl> <int>
#> 1 setosa 5.01 0.2 50
#> 2 versicolor 5.94 1.3 50
#> 3 virginica 6.59 2 50

ggplot2
ggplot - an overview
components of a ggplot-plot

• ggplot(): the ggplot-function is needed. You can supply different arguments here, if you want them to
be true for every part of the plot:

– data: A dataset. The data needs to be tidy.
– mapping: A set of aesthetic mappings, specified using the aes() function and combined with the

plot defaults as described in aesthetic mappings. This links the data to the graphical properties in
the geometries.

• geometries: The name of the geometric object to use to draw each observation. All geoms take aesthetics
as parameters. If you supply an aesthetic (e.g. x, y, size, colour) as a parameter, it will not be scaled,
allowing you to control the appearance of the plot. You only need to set one of stat and geom: every
geom has a default stat.

• statistics: The name of the statistical tranformation to use. A statistical transformation performs
statistical summaries and is key to histograms and smoothes. To keep the data as is, use the “identity”
stat. You only need to set one of stat and geom: every stat a default geom.

• scales: Translation between variable ranges and property ranges (e.g. from numbers to positions on the
plot).

• coordinates: Define the mapping of the aesthetics to the plot.
• facets: Define multiple panel (“small multiples”).
• themes: Add additional design elements to a plot.

data and geoms
data can be added directly as part of the ggplot-object . . .

data("faithful")

ggplot(data = faithful,
mapping = aes(x = eruptions,

y = waiting)) +
geom_point()

10

. . . or be piped into it . . .

faithful %>%
ggplot(mapping = aes(x = eruptions,

y = waiting)) +
geom_point()

. . . or as part of the geometries

ggplot() +
geom_point(mapping = aes(x = eruptions,

y = waiting),
data = faithful)

add command to the mapping to be linked to the data

ggplot(faithful) +
geom_point(aes(x = eruptions,

y = waiting,
colour = eruptions < 3))

11

add command outside of the mapping to be interpreted without link to the data

ggplot(faithful) +
geom_point(aes(x = eruptions,

y = waiting),
colour = "blue")

the number of mappings needed depends on the used geom

Some geoms only need a single mapping and will calculate the rest for you

ggplot(faithful) +
geom_histogram(aes(x = eruptions))

plots are build from the bottom up

geoms are drawn in the order they are added. The point layer is thus drawn on top of the density contours in
the example below.

ggplot(faithful, aes(x = eruptions,
y = waiting)) +

geom_density_2d() +
geom_point()

12

Stat
Every geom has a stat. This is why new data (count) can appear when using geom_bar().

data("mpg")
ggplot(mpg) +

geom_bar(aes(x = class))

Overwriting stat

If we have precomputed count we don’t want any additional computations to perform and we use the identity
stat to leave the data alone.

mpg_counted <- mpg %>%
count(class, name = "count")

ggplot(mpg_counted) +
geom_bar(aes(x = class,

y = count),
stat = "identity")

Geom / Stat combinations

Most obvious geom/stat combinations have a dedicated geom constructor. The one above is available directly
as geom_col().

ggplot(mpg_counted) +
geom_col(aes(x = class,

y = count))

13

calculate values of stat

Values calculated by the stat (e.g. the counting inside the “stat_count”-stat, which is the default when using
“geom_bar”) is available with the after_stat() function inside aes(). You can do all sorts of computations
inside that.

ggplot(mpg) +
geom_bar(aes(x = class,

y = after_stat(100 * count / sum(count))))

use default stats by selecting a geom

Many stats provide multiple variations of the same calculation, and provides a default (here, density).

ggplot(mpg) +
geom_density(aes(x = hwy))

change default stat by hand

For some calculations the after_stat() function must be changed by hand.

ggplot(mpg) +

14

geom_density(aes(x = hwy,
y = after_stat(scaled)))

You can also use stat_summary() to add a big, transparent red dot at the mean hwy for each group.

ggplot(mpg,
aes(x = class,

y = hwy)) +
geom_jitter(width = 0.2) +
stat_summary(geom = "point",

size = 4,
alpha = 0.5,
colour = "red",
fun = mean)

Scales
Scales define how the mapping you specify inside aes() should happen. All mappings have an associated
scale even if not specified.

ggplot(mpg) +
geom_point(aes(x = displ,

y = hwy,
colour = class))

15

Adding a scale explicitly

All scales follow the same naming conventions.

ggplot(mpg) +
geom_point(aes(x = displ,

y = hwy,
colour = class)) +

scale_colour_brewer(type = "qual")

If you want to use different colors use RColorBrewer::display.brewer.all() to see all the different palettes.
More color palettes are available using the paletteer package (see here for all available color palettes from
this package).

Positional mappings (x and y) also have associated scales

ggplot(mpg) +
geom_point(aes(x = displ,

y = hwy)) +
scale_x_continuous(breaks = c(3, 5, 6)) +
scale_y_continuous(trans = "log10")

16

https://github.com/EmilHvitfeldt/r-color-palettes

Facets
The facet defines how data is split among panels. The default facet (facet_null()) puts all the data in a
single panel, while facet_wrap() and facet_grid() allows you to specify different types of small multiples.

ggplot(mpg) +
geom_point(aes(x = displ,

y = hwy)) +
facet_wrap(~ class)

multiple facets

More than one facet can be used. One of the great things about facets is that they share the axes between
the different panels.

ggplot(mpg) +
geom_point(aes(x = displ,

y = hwy)) +
facet_grid(year ~ drv)

Coordinates
The coordinate system is the fabric you draw your layers on in the end. The default coord_cartesian
provides the standard rectangular x-y coordinate system. Changing the coordinate system can have dramatic
effects.

ggplot(mpg) +
geom_bar(aes(x = class)) +
coord_polar()

17

If you want to zoom into your data . . .

ggplot(mpg) +
geom_bar(aes(x = class))

. . . you can do this using the scale . . .

ggplot(mpg) +
geom_bar(aes(x = class)) +
scale_y_continuous(limits = c(0, 40))

But it might not yield the results you want.

. . . but you should do it using the coord.

ggplot(mpg) +
geom_bar(aes(x = class)) +
coord_cartesian(ylim = c(0, 40))

18

Themes
Theming defines the feel and look of your final visualisation and is something you will normally defer to the
final polishing of the plot. It is very easy to change looks with a prebuild theme.

ggplot(mpg) +
geom_bar(aes(y = class)) +
facet_wrap(~ year) +
theme_minimal()

19

	preface
	housekeeping

	programming concepts for data science
	the IDE
	RStudio

	REPL-style

	Basic `modes' of working in R
	shell-based only
	R-script

	just a starter…
	basic stuff to do with R
	use R as a simple calculator

	R is more than a calculator
	Stuff on functions
	types of objects in R
	expand Rs functionality

	Advanced `modes' of working in R
	Rmarkdown document
	Interacting with other languages
	Output formats using Rmarkdown
	Compile Rmarkdown-documents
	Markdown in general

	importing and exporting data
	importing data

	basic tidy
	operations on dataframes
	selecting columns
	filtering rows
	create new variables

	combining multiple functions
	summarize data
	group data according to a variable
	perform summaries

	ggplot2
	ggplot - an overview
	components of a ggplot-plot

	data and geoms
	data can be added directly as part of the ggplot-object …
	… or be piped into it …
	… or as part of the geometries
	add command to the mapping to be linked to the data
	add command outside of the mapping to be interpreted without link to the data
	the number of mappings needed depends on the used geom
	plots are build from the bottom up

	Stat
	Overwriting stat
	Geom / Stat combinations
	calculate values of stat
	use default stats by selecting a geom
	change default stat by hand

	Scales
	Adding a scale explicitly
	Positional mappings (x and y) also have associated scales

	Facets
	multiple facets

	Coordinates
	If you want to zoom into your data …
	… you can do this using the scale …
	… but you should do it using the coord.

	Themes

